06/12/2021

Beyond Bandit Feedback in Online Multiclass Classification

Dirk van der Hoeven, Federico Fusco, Nicolò Cesa-Bianchi

Keywords: reinforcement learning and planning, machine learning, graph learning, bandits, online learning

Abstract: We study the problem of online multiclass classification in a setting where the learner's feedback is determined by an arbitrary directed graph. While including bandit feedback as a special case, feedback graphs allow a much richer set of applications, including filtering and label efficient classification.We introduce \textproc{Gappletron}, the first online multiclass algorithm that works with arbitrary feedback graphs. For this new algorithm,we prove surrogate regret bounds that hold, both in expectation and with high probability, for a large class of surrogate losses. Our bounds are of order $B\sqrt{\rho KT}$, where $B$ is the diameter of the prediction space, $K$ is the number of classes, $T$ is the time horizon, and $\rho$ is the domination number (a graph-theoretic parameter affecting the amount of exploration). In the full information case, we show that \textproc{Gappletron} achieves a constant surrogate regret of order $B^2K$. We also prove a general lower bound of order $\max\big\{B^2K,\sqrt{T}\big\}$ showing that our upper bounds are not significantly improvable. Experiments on synthetic data show that for various feedback graphs our algorithm is competitive against known baselines.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers