06/12/2021

Fast Approximate Dynamic Programming for Infinite-Horizon Markov Decision Processes

Mohamad Amin Sharifi Kolarijani, Gyula Max, Peyman Mohajerin Esfahani

Keywords:

Abstract: In this study, we consider the infinite-horizon, discounted cost, optimal control of stochastic nonlinear systems with separable cost and constraints in the state and input variables. Using the linear-time Legendre transform, we propose a novel numerical scheme for implementation of the corresponding value iteration (VI) algorithm in the conjugate domain. Detailed analyses of the convergence, time complexity, and error of the proposed algorithm are provided. In particular, with a discretization of size $X$ and $U$ for the state and input spaces, respectively, the proposed approach reduces the time complexity of each iteration in the VI algorithm from $O(XU)$ to $O(X+U)$, by replacing the minimization operation in the primal domain with a simple addition in the conjugate domain.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers