26/04/2020

Neural Stored-program Memory

Hung Le, Truyen Tran, Svetha Venkatesh

Keywords: Memory Augmented Neural Networks, Universal Turing Machine, fast-weight

Abstract: Neural networks powered with external memory simulate computer behaviors. These models, which use the memory to store data for a neural controller, can learn algorithms and other complex tasks. In this paper, we introduce a new memory to store weights for the controller, analogous to the stored-program memory in modern computer architectures. The proposed model, dubbed Neural Stored-program Memory, augments current memory-augmented neural networks, creating differentiable machines that can switch programs through time, adapt to variable contexts and thus fully resemble the Universal Turing Machine. A wide range of experiments demonstrate that the resulting machines not only excel in classical algorithmic problems, but also have potential for compositional, continual, few-shot learning and question-answering tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers