06/12/2021

Fast and Memory Efficient Differentially Private-SGD via JL Projections

Zhiqi Bu, Sivakanth Gopi, Janardhan Kulkarni, Yin Tat Lee, Hanwen Shen, Uthaipon Tantipongpipat

Keywords: deep learning, privacy

Abstract: Differentially Private-SGD (DP-SGD) of Abadi et al. and its variations are the only known algorithms for private training of large scale neural networks. This algorithm requires computation of per-sample gradients norms which is extremely slow and memory intensive in practice. In this paper, we present a new framework to design differentially private optimizers called DP-SGD-JL and DP-Adam-JL. Our approach uses Johnson–Lindenstrauss (JL) projections to quickly approximate the per-sample gradient norms without exactly computing them, thus making the training time and memory requirements of our optimizers closer to that of their non-DP versions. Unlike previous attempts to make DP-SGD faster which work only on a subset of network architectures or use compiler techniques, we propose an algorithmic solution which works for any network in a black-box manner which is the main contribution of this paper. To illustrate this, on IMDb dataset, we train a Recurrent Neural Network (RNN) to achieve good privacy-vs-accuracy tradeoff, while being significantly faster than DP-SGD and with a similar memory footprint as non-private SGD.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers