06/12/2021

On the Convergence of Step Decay Step-Size for Stochastic Optimization

Xiaoyu Wang, Sindri Magnússon, Mikael Johansson

Keywords: deep learning, optimization, machine learning

Abstract: The convergence of stochastic gradient descent is highly dependent on the step-size, especially on non-convex problems such as neural network training. Step decay step-size schedules (constant and then cut) are widely used in practice because of their excellent convergence and generalization qualities, but their theoretical properties are not yet well understood. We provide convergence results for step decay in the non-convex regime, ensuring that the gradient norm vanishes at an $\mathcal{O}(\ln T/\sqrt{T})$ rate. We also provide near-optimal (and sometimes provably tight) convergence guarantees for general, possibly non-smooth, convex and strongly convex problems. The practical efficiency of the step decay step-size is demonstrated in several large-scale deep neural network training tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers