06/12/2021

Robust Compressed Sensing MRI with Deep Generative Priors

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros Dimakis, Jonathan Tamir

Keywords: theory

Abstract: The CSGM framework (Bora-Jalal-Price-Dimakis'17) has shown that deepgenerative priors can be powerful tools for solving inverse problems.However, to date this framework has been empirically successful only oncertain datasets (for example, human faces and MNIST digits), and itis known to perform poorly on out-of-distribution samples. In thispaper, we present the first successful application of the CSGMframework on clinical MRI data. We train a generative prior on brainscans from the fastMRI dataset, and show that posterior sampling viaLangevin dynamics achieves high quality reconstructions. Furthermore,our experiments and theory show that posterior sampling is robust tochanges in the ground-truth distribution and measurement process.Our code and models are available at: \url{https://github.com/utcsilab/csgm-mri-langevin}.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers