06/12/2021

S$^3$: Sign-Sparse-Shift Reparametrization for Effective Training of Low-bit Shift Networks

Xinlin Li, Bang Liu, Yaoliang Yu, Wulong Liu, Chunjing XU, Vahid Partovi Nia

Keywords: deep learning

Abstract: Shift neural networks reduce computation complexity by removing expensive multiplication operations and quantizing continuous weights into low-bit discrete values, which are fast and energy-efficient compared to conventional neural networks. However, existing shift networks are sensitive to the weight initialization and yield a degraded performance caused by vanishing gradient and weight sign freezing problem. To address these issues, we propose S$^3$ re-parameterization, a novel technique for training low-bit shift networks. Our method decomposes a discrete parameter in a sign-sparse-shift 3-fold manner. This way, it efficiently learns a low-bit network with weight dynamics similar to full-precision networks and insensitive to weight initialization. Our proposed training method pushes the boundaries of shift neural networks and shows 3-bit shift networks compete with their full-precision counterparts in terms of top-1 accuracy on ImageNet.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers