06/12/2021

The best of both worlds: stochastic and adversarial episodic MDPs with unknown transition

Tiancheng Jin, Longbo Huang, Haipeng Luo

Keywords: reinforcement learning and planning, online learning

Abstract: We consider the best-of-both-worlds problem for learning an episodic Markov Decision Process through $T$ episodes, with the goal of achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ regret when the losses are adversarial and simultaneously $\mathcal{O}(\log T)$ regret when the losses are (almost) stochastic. Recent work by [Jin and Luo, 2020] achieves this goal when the fixed transition is known, and leaves the case of unknown transition as a major open question. In this work, we resolve this open problem by using the same Follow-the-Regularized-Leader (FTRL) framework together with a set of new techniques. Specifically, we first propose a loss-shifting trick in the FTRL analysis, which greatly simplifies the approach of [Jin and Luo, 2020] and already improves their results for the known transition case. Then, we extend this idea to the unknown transition case and develop a novel analysis which upper bounds the transition estimation error by the regret itself in the stochastic setting, a key property to ensure $\mathcal{O}(\log T)$ regret.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers