06/12/2021

General Low-rank Matrix Optimization: Geometric Analysis and Sharper Bounds

Haixiang Zhang, Yingjie Bi, Javad Lavaei

Keywords: optimization

Abstract: This paper considers the global geometry of general low-rank minimization problems via the Burer-Monterio factorization approach. For the rank-$1$ case, we prove that there is no spurious second-order critical point for both symmetric and asymmetric problems if the rank-$2$ RIP constant $\delta$ is less than $1/2$. Combining with a counterexample with $\delta=1/2$, we show that the derived bound is the sharpest possible. For the arbitrary rank-$r$ case, the same property is established when the rank-$2r$ RIP constant $\delta$ is at most $1/3$. We design a counterexample to show that the non-existence of spurious second-order critical points may not hold if $\delta$ is at least $1/2$. In addition, for any problem with $\delta$ between $1/3$ and $1/2$, we prove that all second-order critical points have a positive correlation to the ground truth. Finally, the strict saddle property, which can lead to the polynomial-time global convergence of various algorithms, is established for both the symmetric and asymmetric problems when the rank-$2r$ RIP constant $\delta$ is less than $1/3$. The results of this paper significantly extend several existing bounds in the literature.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers