19/08/2021

Direct Measure Matching for Crowd Counting

Hui Lin, Xiaopeng Hong, Zhiheng Ma, Xing Wei, Yunfeng Qiu, Yaowei Wang, Yihong Gong

Keywords: Computer Vision, Recognition, Class Imbalance and Unequal Cost, Constraint Optimization

Abstract: Traditional crowd counting approaches usually use Gaussian assumption to generate pseudo density ground truth, which suffers from problems like inaccurate estimation of the Gaussian kernel sizes. In this paper, we propose a new measure-based counting approach to regress the predicted density maps to the scattered point-annotated ground truth directly. First, crowd counting is formulated as a measure matching problem. Second, we derive a semi-balanced form of Sinkhorn divergence, based on which a Sinkhorn counting loss is designed for measure matching. Third, we propose a self-supervised mechanism by devising a Sinkhorn scale consistency loss to resist scale changes. Finally, an efficient optimization method is provided to minimize the overall loss function. Extensive experiments on four challenging crowd counting datasets namely ShanghaiTech, UCF-QNRF, JHU++ and NWPU have validated the proposed method.

 0
 0
 0
 1
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers