19/08/2021

What If We Could Not See? Counterfactual Analysis for Egocentric Action Anticipation

Tianyu Zhang, Weiqing Min, Jiahao Yang, Tao Liu, Shuqiang Jiang, Yong Rui

Keywords: Computer Vision, Video

Abstract: Egocentric action anticipation aims at predicting the near future based on past observation in first-person vision. While future actions may be wrongly predicted due to the dataset bias, we present a counterfactual analysis framework for egocentric action anticipation (CA-EAA) to enhance the capacity. In the factual case, we can predict the upcoming action based on visual features and semantic labels from past observation. Imagining one counterfactual situation where no visual representation had been observed, we would obtain a counterfactual predicted action only using past semantic labels. In this way, we can reduce the side-effect caused by semantic labels via a comparison between factual and counterfactual outcomes, which moves a step towards unbiased prediction for egocentric action anticipation. We conduct experiments on two large-scale egocentric video datasets. Qualitative and quantitative results validate the effectiveness of our proposed CA-EAA.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers