19/08/2021

Masked Contrastive Learning for Anomaly Detection

Hyunsoo Cho, Jinseok Seol, Sang-goo Lee

Keywords: Data Mining, Anomaly/Outlier Detection, Clustering, Clustering

Abstract: Detecting anomalies is one fundamental aspect of a safety-critical software system, however, it remains a long-standing problem. Numerous branches of works have been proposed to alleviate the complication and have shown promising results. In particular, self-supervised learning based methods are spurring interest due to their capability of learning diverse representations without additional labels. Among self-supervised learning tactics, contrastive learning is one specific framework showing pronounced results in various fields including anomaly detection. However, the primary objective of contrastive learning is to learn task-agnostic features without any labels, which is not entirely suited to discern anomalies. In this paper, we propose a task-specific variant of contrastive learning named masked contrastive learning, which is more befitted for anomaly detection. Moreover, we propose a new inference method dubbed self-ensemble inference that further boosts performance by leveraging the ability learned through auxiliary self-supervision tasks. By combining our models, we can outperform previous state-of-the-art methods by a significant margin on various benchmark datasets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers