19/08/2021

Practical One-Shot Federated Learning for Cross-Silo Setting

Qinbin Li, Bingsheng He, Dawn Song

Keywords: Data Mining, Federated Learning, Classification

Abstract: Federated learning enables multiple parties to collaboratively learn a model without exchanging their data. While most existing federated learning algorithms need many rounds to converge, one-shot federated learning (i.e., federated learning with a single communication round) is a promising approach to make federated learning applicable in cross-silo setting in practice. However, existing one-shot algorithms only support specific models and do not provide any privacy guarantees, which significantly limit the applications in practice. In this paper, we propose a practical one-shot federated learning algorithm named FedKT. By utilizing the knowledge transfer technique, FedKT can be applied to any classification models and can flexibly achieve differential privacy guarantees. Our experiments on various tasks show that FedKT can significantly outperform the other state-of-the-art federated learning algorithms with a single communication round.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers