19/08/2021

Video Summarization via Label Distributions Dual-Reward

Yongbiao Gao, Ning Xu, Xin Geng

Keywords: Machine Learning, Multi-instance; Multi-label; Multi-view learning, Applications of Reinforcement Learning

Abstract: Reinforcement learning maps from perceived state representation to actions, which is adopted to solve the video summarization problem. The reward is crucial for deal with the video summarization task via reinforcement learning, since the reward signal defines the goal of video summarization. However, existing reward mechanism in reinforcement learning cannot handle the ambiguity which appears frequently in video summarization, i.e., the diverse consciousness by different people on the same video. To solve this problem, in this paper label distributions are mapped from the CNN and LSTM-based state representation to capture the subjectiveness of video summaries. The dual-reward is designed by measuring the similarity between user score distributions and the generated label distributions. Not only the average score but also the the variance of the subjective opinions are considered in summary generation. Experimental results on several benchmark datasets show that our proposed method outperforms other approaches under various settings.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers