19/08/2021

Riemannian Stochastic Recursive Momentum Method for non-Convex Optimization

Andi Han, Junbin Gao

Keywords: Machine Learning, Online Learning

Abstract: We propose a stochastic recursive momentum method for Riemannian non-convex optimization that achieves a nearly-optimal complexity to find epsilon-approximate solution with one sample. The new algorithm requires one-sample gradient evaluations per iteration and does not require restarting with a large batch gradient, which is commonly used to obtain a faster rate. Extensive experiment results demonstrate the superiority of the proposed algorithm. Extensions to nonsmooth and constrained optimization settings are also discussed.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers