19/08/2021

Multi-level Generative Models for Partial Label Learning with Non-random Label Noise

Yan Yan, Yuhong Guo

Keywords: Machine Learning, Classification, Weakly Supervised Learning

Abstract: Partial label (PL) learning tackles the problem where each training instance is associated with a set of candidate labels that include both the true label and some irrelevant noise labels. In this paper, we propose a novel multi-level generative model for partial label learning (MGPLL), which tackles the PL problem by learning both a label level adversarial generator and a feature level adversarial generator under a bi-directional mapping framework between the label vectors and the data samples. MGPLL uses a conditional noise label generation network to model the non-random noise labels and perform label denoising, and uses a multi-class predictor to map the training instances to the denoised label vectors, while a conditional data feature generator is used to form an inverse mapping from the denoised label vectors to data samples. Both the noise label generator and the data feature generator are learned in an adversarial manner to match the observed candidate labels and data features respectively. We conduct extensive experiments on both synthesized and real-world partial label datasets. The proposed approach demonstrates the state-of-the-art performance for partial label learning.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers