19/08/2021

MEDA: Meta-Learning with Data Augmentation for Few-Shot Text Classification

Pengfei Sun, Yawen Ouyang, Wenming Zhang, Xin-yu Dai

Keywords: Natural Language Processing, Natural Language Processing, Text Classification

Abstract: Meta-learning has recently emerged as a promising technique to address the challenge of few-shot learning. However, standard meta-learning methods mainly focus on visual tasks, which makes it hard for them to deal with diverse text data directly. In this paper, we introduce a novel framework for few-shot text classification, which is named as MEta-learning with Data Augmentation (MEDA). MEDA is composed of two modules, a ball generator and a meta-learner, which are learned jointly. The ball generator is to increase the number of shots per class by generating more samples, so that meta-learner can be trained with both original and augmented samples. It is worth noting that ball generator is agnostic to the choice of the meta-learning methods. Experiment results show that on both datasets, MEDA outperforms existing state-of-the-art methods and significantly improves the performance of meta-learning on few-shot text classification.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers