19/08/2021

MRD-Net: Multi-Modal Residual Knowledge Distillation for Spoken Question Answering

Chenyu You, Nuo Chen, Yuexian Zou

Keywords: Natural Language Processing, Question Answering, Sentiment Analysis and Text Mining, Speech

Abstract: Spoken question answering (SQA) has recently drawn considerable attention in the speech community. It requires systems to find correct answers from the given spoken passages simultaneously. The common SQA systems consist of the automatic speech recognition (ASR) module and text-based question answering module. However, previous methods suffer from severe performance degradation due to ASR errors. To alleviate this problem, this work proposes a novel multi-modal residual knowledge distillation method (MRD-Net), which further distills knowledge at the acoustic level from the audio-assistant (Audio-A). Specifically, we utilize the teacher (T) trained on manual transcriptions to guide the training of the student (S) on ASR transcriptions. We also show that introducing an Audio-A helps this procedure by learning residual errors between T and S. Moreover, we propose a simple yet effective attention mechanism to adaptively leverage audio-text features as the new deep attention knowledge to boost the network performance. Extensive experiments demonstrate that the proposed MRD-Net achieves superior results compared with state-of-the-art methods on three spoken question answering benchmark datasets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers