19/08/2021

Deep Bucket Elimination

Yasaman Razeghi, Kalev Kask, Yadong Lu, Pierre Baldi, Sakshi Agarwal, Rina Dechter

Keywords: Uncertainty in AI, Approximate Probabilistic Inference, Exact Probabilistic Inference

Abstract: Bucket Elimination (BE) is a universal inference scheme that can solve most tasks over probabilistic and deterministic graphical models exactly. However, it often requires exponentially high levels of memory (in the induced-width) preventing its execution. In the spirit of exploiting Deep Learning for inference tasks, in this paper, we will use neural networks to approximate BE. The resulting Deep Bucket Elimination (DBE) algorithm is developed for computing the partition function. We provide a proof-of-concept empirically using instances from several different benchmarks, showing that DBE can be a more accurate approximation than current state-of-the-art approaches for approximating BE (e.g. the mini-bucket schemes), especially when problems are sufficiently hard.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers