19/08/2021

Analogical Proportions: Why They Are Useful in AI

Henri Prade, Gilles Richard

Keywords: Knowledge representation and reasoning, General, General

Abstract: This paper presents a survey of researches in analogical reasoning whose building block are analogical proportions which are statements of the form “a is to b as c is to d”. They have been developed in the last twenty years within an Artificial Intelligence perspective. After discussing their formal modeling with the associated inference mechanism, the paper reports the main results obtained in various AI domains ranging from computational linguistics to classification, including image processing, I.Q. tests, case based reasoning, preference learning, and formal concepts analysis. The last section discusses some new theoretical concerns, and the potential of analogical proportions in other areas such as argumentation, transfer learning, and XAI.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers