19/08/2021

Revisiting Wedge Sampling for Budgeted Maximum Inner Product Search (Extended Abstract)

Stephan S. Lorenzen, Ninh Pham

Keywords: Data Mining, Information Retrieval, Recommender Systems

Abstract: Top-k maximum inner product search (MIPS) is a central task in many machine learning applications. This work extends top-k MIPS with a budgeted setting, that asks for the best approximate top-k MIPS given a limited budget of computational operations. We study recent advanced sampling methods, including wedge and diamond sampling, to solve budgeted top-k MIPS. First, we theoretically show that diamond sampling is essentially a combination of wedge sampling and basic sampling for top-k MIPS. Second, we propose dWedge, a simple deterministic variant of wedge sampling for budgeted top-k MIPS. Empirically, dWedge provides significantly higher accuracy than other budgeted top-k MIPS solvers while maintaining a similar speedup.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers