19/08/2021

Bottleneck Identification to Semantic Segmentation of Industrial 3D Point Cloud Scene via Deep Learning

Romain Cazorla, Line Poinel, Panagiotis Papadakis, Cédric Buche

Keywords: Computer Vision, 2D and 3D Computer Vision, Deep Learning, Applications of Supervised Learning, Recognition

Abstract: Point cloud acquisition techniques are an essential tool for the digitization of industrial plants, yet the bulk of a designer's work remains manual. A first step to automatize drawing generation is to extract the semantics of the point cloud. Towards this goal, we investigate the use of deep learning to semantically segment oil and gas industrial scenes. We focus on domain characteristics such as high variation of object size, increased concavity and lack of annotated data, which hampers the use of conventional approaches. To address these issues, we advocate the use of synthetic data, adaptive downsampling and context sharing.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers