19/08/2021

Towards Robust Dynamic Network Embedding

Chengbin Hou, Ke Tang

Keywords: Data Mining, Mining Graphs, Semi Structured Data, Complex Data, Time-series; Data Streams, Ensemble Methods, Embeddings

Abstract: Dynamic Network Embedding (DNE) has recently drawn much attention due to the dynamic nature of many real-world networks. Comparing to a static network, a dynamic network has a unique character called the degree of changes, which can be defined as the average number of the changed edges between consecutive snapshots spanning a dynamic network. The degree of changes could be quite different even for the dynamic networks generated from the same dataset. It is natural to ask whether existing DNE methods are effective and robust w.r.t. the degree of changes. Towards robust DNE, we suggest two important scenarios. One is to investigate the robustness w.r.t. different slicing settings that are used to generate different dynamic networks with different degree of changes, while another focuses more on the robustness w.r.t. different number of changed edges over timesteps.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers