19/08/2021

Robot Manipulation Learning Using Generative Adversarial Imitation Learning

Mohamed Khalil Jabri

Keywords: Machine Learning, Reinforcement Learning, Adversarial Machine Learning, Unsupervised Learning, Learning in Robotics

Abstract: Imitation learning allows learning complex behaviors given demonstrations. Early approaches belonging to either Behavior Cloning or Inverse Reinforcement Learning were however of limited scalability to complex environments. A more promising approach termed as Generative Adversarial Imitation Learning tackles the imitation learning problem by drawing a connection with Generative Adversarial Networks. In this work, we advocate the use of this class of methods and investigate possible extensions by endowing them with global temporal consistency, in particular through a contrastive learning based approach.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers