22/11/2021

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels

Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi

Keywords: fine-grained recognition, weakly-supervised recognition, fine-grained retrieval, unsupervised recognition, image-to-text retrieval, text-to-image retrieval, image classification

Abstract: Most of us are not experts in specific fields, such as ornithology. Nonetheless, we do have general image and language understanding capabilities that we use to match what we see to expert resources. This allows us to expand our knowledge and perform novel tasks without ad-hoc external supervision. On the contrary, machines have a much harder time consulting expert-curated knowledge bases unless trained specifically with that knowledge in mind. Thus, in this paper we consider a new problem: fine-grained image recognition without expert annotations, which we address by leveraging the vast knowledge available in web encyclopedias. First, we learn a model to describe the visual appearance of objects using non-expert image descriptions. We then train a fine- grained textual similarity model that matches image descriptions with documents on a sentence-level basis. We evaluate the method on two datasets and compare with several strong baselines and the state of the art in cross-modal retrieval. Code is available at: https://github.com/subhc/clever.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers