22/11/2021

Higher-Order Implicit Fairing Networks for 3D Human Pose Estimation

Jianning Quan, Abdessamad Ben Hamza

Keywords: Human pose estimation, higher-order graph convolution, implicit fairing, Jacobi method

Abstract: Estimating a 3D human pose has proven to be a challenging task, primarily because of the complexity of the human body joints, occlusions, and variability in lighting conditions. In this paper, we introduce a higher-order graph convolutional framework with initial residual connections for 2D-to-3D pose estimation. Using multi-hop neighborhoods for node feature aggregation, our model is able to capture the long-range dependencies between body joints. Moreover, our approach leverages residual connections, which are integrated by design in our network architecture, ensuring that the learned feature representations retain important information from the initial features of the input layer as the network depth increases. Experiments and ablations studies conducted on a standard benchmark demonstrate the effectiveness of our model, achieving superior performance over strong baseline methods for 3D human pose estimation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers