22/11/2021

UDIS: Unsupervised Discovery of Bias in Deep Visual Recognition Models

Arvindkumar Krishnakumar, Viraj Prabhu, Sruthi Sudhakar, Judy Hoffman

Keywords: bias discovery, fairness, explainability, ethics, visual explanations, failure modes

Abstract: Deep learning models have been shown to learn spurious correlations from data that sometimes lead to systematic failures for certain subpopulations. Prior work has typically diagnosed this by crowdsourcing annotations for various protected attributes and measuring performance, which is both expensive to acquire and difficult to scale. In this work, we propose UDIS, an unsupervised algorithm for surfacing and analyzing such failure modes. UDIS identifies subpopulations via hierarchical clustering of dataset embeddings and surfaces systematic failure modes by visualizing low performing clusters along with their gradient-weighted class-activation maps. We show the effectiveness of UDIS in identifying failure modes in models trained for image classification on the CelebA and MSCOCO datasets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers