22/11/2021

Learning to Generate Novel Classes for Deep Metric Learning

Kyungmoon Lee, Sungyeon Kim, Seunghoon Hong, Suha Kwak

Keywords: deep metric learning, metric learning, data augmentation, sample generation

Abstract: Deep metric learning aims to learn an embedding space where the distance between data reflects their class equivalence, even when their classes are unseen during training. However, the limited number of classes available in training precludes generalization of the learned embedding space. Motivated by this, we introduce a new data augmentation approach that synthesizes novel classes and their embedding vectors. Our approach can provide rich semantic information to an embedding model and improve its generalization by augmenting training data with novel classes unavailable in the original data. We implement this idea by learning and exploiting a conditional generative model, which, given a class label and a noise, produces a random embedding vector of the class. Our proposed generator allows the loss to use richer class relations by augmenting realistic and diverse classes, resulting in better generalization to unseen samples. Experimental results on public benchmark datasets demonstrate that our method clearly enhances the performance of proxy-based losses.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers