22/11/2021

Weakly-Supervised Dense Action Anticipation

Haotong Zhang, Fuhai Chen, Angela Yao

Keywords: dense anticipation, video understanding, weak supervision

Abstract: Dense anticipation aims to forecast future actions and their durations for long horizons. Existing approaches rely on fully-labelled data, i.e. sequences labelled with all future actions and their durations. We present a (semi-) weakly supervised method using only a small number of fully-labelled sequences and predominantly sequences in which only the (one) upcoming action is labelled. To this end, we propose a framework that generates pseudo-labels for future actions and their durations and adaptively refines them through a refinement module. Given only the upcoming action label as input, these pseudo-labels guide action/duration prediction for the future. We further design an attention mechanism to predict context-aware durations. Experiments on the Breakfast and 50Salads benchmarks verify our method’s effectiveness; we are competitive even when compared to fully supervised state-of-the-art models. We will make our code available at: https://github.com/zhanghaotong1/WSLVideoDenseAnticipation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers