22/11/2021

Unified 3D Mesh Recovery of Humans and Animals by Learning Animal Exercise

Youwang Kim, Ji-Yeon Kim, Kyungdon Joo, Tae-Hyun Oh

Keywords: single view mesh reconstruction, multi-task learning, unified mesh recovery, human pose estimation, animal pose estimation, morphological similarity, parametric mesh model, weakly-supervised learning, multi-class mesh reconstruction, deformable objects

Abstract: We propose an end-to-end unified 3D mesh recovery of humans and quadruped animals trained in a weakly-supervised way. Unlike recent work focusing on a single target class only, we aim to recover 3D mesh of broader classes with a single multi-task model. However, there exists no dataset that can directly enable multi-task learning due to the absence of both human and animal annotations for a single object, e.g., a human image does not have animal pose annotations; thus, we have to devise a new way to exploit heterogeneous datasets. To make the unstable disjoint multi-task learning jointly trainable, we propose to exploit the morphological similarity between humans and animals, motivated by animal exercise where humans imitate animal poses. We realize the morphological similarity by semantic correspondences, called sub-keypoint, which enables joint training of human and animal mesh regression branches. Besides, we propose class-sensitive regularization methods to avoid a mean-shape bias and to improve the distinctiveness across multi-classes. Our method performs favorably against recent uni-modal models on various human and animal datasets while being far more compact.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers