07/09/2020

Attribute-Guided Image Generation from Layout

Ke Ma, Bo Zhao, Leonid Sigal

Keywords: conditional image generation, GAN

Abstract: Recent approaches have achieved great successes in image generation from structured inputs, e.g., semantic segmentation, scene graph or layout. Although these methods allow specification of objects and their locations at image-level, they lack the fidelity and semantic control to specify visual appearance of these objects at an instance-level. To address this limitation, we propose a new image generation method that enables instance-level attribute specification. Specifically, the input to our attribute-guided generative model is a tuple that contains: (1) object bounding boxes, (2) object categories and (3) a (optional) set of attributes for each object. The output is a generated image where the requested objects are in the desired locations and have prescribed attributes. Several losses work collaboratively to encourage accurate, consistent and diverse image generation. Experiments on Visual Genome datasets demonstrate our model's capacity to control object-level attributes in generated images, and validate plausibility of disentangled object-attribute representation in the image generation from layout task. Also, the generated images from our model have higher resolution, object classification accuracy and consistency than the previous state-of-the-art.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers