07/09/2020

Reducing Label Noise in Anchor-Free Object Detection

Nermin Samet, Samet Hicsonmez, Emre Akbas

Keywords: Object Detection, Anchor-Free, Prediction Pooling, Sum Pooling

Abstract: Current anchor-free object detectors label all the features that spatially fall inside a predefined central region of a ground-truth box as positive. This approach causes label noise during training, since some of these positively labeled features may be on the background or an occluder object, or they are simply not discriminative features. In this paper, we propose a new labeling strategy aimed to reduce the label noise in anchor-free detectors. We sum-pool predictions stemming from individual features into a single prediction. This allows the model to reduce the contributions of non-discriminatory features during training. We develop a new one-stage, anchor-free object detector, PPDet, to employ this labeling strategy during training and a similar prediction pooling method during inference. On the COCO dataset, PPDet achieves the best performance among anchor-free top-down detectors and performs on-par with the other state-of-the-art methods. It also outperforms all major one-stage and two-stage methods in small object detection (APs 31.4). Code is available at https://github.com/nerminsamet/ppdet.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers