18/07/2021

Latent Programmer: Discrete Latent Codes for Program Synthesis

Joey Hong, David Dohan, Rishabh Singh, Charles Sutton, Manzil Zaheer

Keywords: Algorithms, Structured Prediction

Abstract: A key problem in program synthesis is searching over the large space of possible programs. Human programmers might decide the high-level structure of the desired program before thinking about the details; motivated by this intuition, we consider two-level search for program synthesis, in which the synthesizer first generates a plan, a sequence of symbols that describes the desired program at a high level, before generating the program. We propose to learn representations of programs that can act as plans to organize such a two-level search. Discrete latent codes are appealing for this purpose, and can be learned by applying recent work on discrete autoencoders. Based on these insights, we introduce the Latent Programmer (LP), a program synthesis method that first predicts a discrete latent code from input/output examples, and then generates the program in the target language. We evaluate the LP on two domains, demonstrating that it yields an improvement in accuracy, especially on longer programs for which search is most difficult.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers