18/07/2021

Solving Challenging Dexterous Manipulation Tasks With Trajectory Optimisation and Reinforcement Learning

Henry Charlesworth, Giovanni Montana

Keywords: Reinforcement Learning and Planning, Planning and Control

Abstract: Training agents to autonomously control anthropomorphic robotic hands has the potential to lead to systems capable of performing a multitude of complex manipulation tasks in unstructured and uncertain environments. In this work, we first introduce a suite of challenging simulated manipulation tasks where current reinforcement learning and trajectory optimisation techniques perform poorly. These include environments where two simulated hands have to pass or throw objects between each other, as well as an environment where the agent must learn to spin a long pen between its fingers. We then introduce a simple trajectory optimisation algorithm that performs significantly better than existing methods on these environments. Finally, on the most challenging ``PenSpin" task, we combine sub-optimal demonstrations generated through trajectory optimisation with off-policy reinforcement learning, obtaining performance that far exceeds either of these approaches individually. Videos of all of our results are available at: https://dexterous-manipulation.github.io

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers