18/07/2021

Unitary Branching Programs: Learnability and Lower Bounds

Fidel Ernesto Diaz Andino, Maria Kokkou, Mateus de Oliveira Oliveira, Farhad Vadiee

Keywords: Algorithms, Active Learning, Algorithms, Regression, Algorithms, Boosting and Ensemble Methods; Algorithms, Model Selection and Structure Learning; Theory, Large Deviations a

Abstract: Bounded width branching programs are a formalism that can be used to capture the notion of non-uniform constant-space computation. In this work, we study a generalized version of bounded width branching programs where instructions are defined by unitary matrices of bounded dimension. We introduce a new learning framework for these branching programs that leverages on a combination of local search techniques with gradient descent over Riemannian manifolds. We also show that gapped, read-once branching programs of bounded dimension can be learned with a polynomial number of queries in the presence of a teacher. Finally, we provide explicit near-quadratic size lower-bounds for bounded-dimension unitary branching programs, and exponential size lower-bounds for bounded-dimension read-once gapped unitary branching programs. The first lower bound is proven using a combination of Neciporuk’s lower bound technique with classic results from algebraic geometry. The second lower bound is proven within the framework of communication complexity theory.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers