18/07/2021

Locally Private k-Means in One Round

Alisa Chang, Badih Ghazi, Ravi Kumar, Pasin Manurangsi

Keywords: Social Aspects of Machine Learning, Privacy, Anonymity, and Security

Abstract: We provide an approximation algorithm for k-means clustering in the \emph{one-round} (aka \emph{non-interactive}) local model of differential privacy (DP). Our algorithm achieves an approximation ratio arbitrarily close to the best \emph{non private} approximation algorithm, improving upon previously known algorithms that only guarantee large (constant) approximation ratios. Furthermore, ours is the first constant-factor approximation algorithm for k-means that requires only \emph{one} round of communication in the local DP model, positively resolving an open question of Stemmer (SODA 2020). Our algorithmic framework is quite flexible; we demonstrate this by showing that it also yields a similar near-optimal approximation algorithm in the (one-round) shuffle DP model.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers