18/07/2021

Efficient Online Learning for Dynamic k-Clustering

Dimitris Fotakis, Georgios Piliouras, Stratis Skoulakis

Keywords: Theory, Online Learning Theory

Abstract: In this work, we study dynamic clustering problems from the perspective of online learning. We consider an online learning problem, called \textit{Dynamic $k$-Clustering}, in which $k$ centers are maintained in a metric space over time (centers may change positions) such as a dynamically changing set of $r$ clients is served in the best possible way. The connection cost at round $t$ is given by the \textit{$p$-norm} of the vector formed by the distance of each client to its closest center at round $t$, for some $p\geq 1$. We design a \textit{$\Theta\left( \min(k,r) \right)$-regret} polynomial-time online learning algorithm, while we show that, under some well-established computational complexity conjectures, \textit{constant-regret} cannot be achieved in polynomial-time. In addition to the efficient solution of Dynamic $k$-Clustering, our work contributes to the long line of research of combinatorial online learning.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers