18/07/2021

A Scalable Second Order Method for Ill-Conditioned Matrix Completion from Few Samples

Christian Kümmerle, Claudio Mayrink Verdun

Keywords: Optimization, Non-Convex Optimization

Abstract: We propose an iterative algorithm for low-rank matrix completion with that can be interpreted as an iteratively reweighted least squares (IRLS) algorithm, a saddle-escaping smoothing Newton method or a variable metric proximal gradient method applied to a non-convex rank surrogate. It combines the favorable data-efficiency of previous IRLS approaches with an improved scalability by several orders of magnitude. We establish the first local convergence guarantee from a minimal number of samples for that class of algorithms, showing that the method attains a local quadratic convergence rate. Furthermore, we show that the linear systems to be solved are well-conditioned even for very ill-conditioned ground truth matrices. We provide extensive experiments, indicating that unlike many state-of-the-art approaches, our method is able to complete very ill-conditioned matrices with a condition number of up to $10^{10}$ from few samples, while being competitive in its scalability.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers