18/07/2021

Deeply-Debiased Off-Policy Interval Estimation

Chengchun Shi, Runzhe Wan, Victor Chernozhukov, Rui Song

Keywords: , Theory, Learning Theory, Reinforcement Learning and Planning

Abstract: Off-policy evaluation learns a target policy's value with a historical dataset generated by a different behavior policy. In addition to a point estimate, many applications would benefit significantly from having a confidence interval (CI) that quantifies the uncertainty of the point estimate. In this paper, we propose a novel procedure to construct an efficient, robust, and flexible CI on a target policy's value. Our method is justified by theoretical results and numerical experiments. A Python implementation of the proposed procedure is available at https://github.com/ RunzheStat/D2OPE.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers