04/08/2021

Exponential savings in agnostic active learning through abstention

Nikita Puchkin, Nikita Zhivotovskiy

Keywords:

Abstract: We show that in pool-based active classification without assumptions on the underlying distribution, if the learner is given the power to abstain from some predictions by paying the price marginally smaller than the average loss 1/2 of a random guess, exponential savings in the number of label requests are possible whenever they are possible in the corresponding realizable problem. We extend this result to provide a necessary and sufficient condition for exponential savings in pool-based active classification under the model misspecification.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers