07/06/2021

Classifying Reasonability in Retellings of Personal Events Shared on Social Media: A Preliminary Case Study with /r/AmITheAsshole

Ethan Haworth, Ted Grover, Justin Langston, Ankush Patel, Joseph West, Alex C. Williams

Keywords: Subjectivity in textual data, sentiment analysis, polarity/opinion identification and extraction, linguistic analyses of social media behavior, Trend identification and tracking, time series forecasting, Measuring predictability of real world phenomena bas

Abstract: People regularly share retellings of their personal events through social media websites to elicit feedback about the reasonability of their actions in the event's context. In this paper, we explore how learning approaches can be used toward the goal of classifying reasonability in personal retellings of events shared on social media. We collect 13,748 community-labeled posts from /r/AmITheAsshole, a subreddit in which Reddit users share retellings of personal events which are voted upon by community members. We build and evaluate a total of 21 machine learning models across seven types of models and three distinct feature sets. We find that our best-performing model can predict the reasonability of a post with an F1 score of .76. Our findings suggest that features derived from the post and author metadata were more predictive than simple linguistic features like the post sentiment and types of words used. We conclude with a discussion on the implications of our findings as they relate to sharing retellings of personal events on social media and beyond.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICWSM 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers