05/04/2021

Fluid: Resource-aware Hyperparameter Tuning Engine

Peifeng Yu, Amber Liu, Mosharaf Chowdhury

Keywords:

Abstract: Current hyperparameter tuning solutions lack complementary execution engines to efficiently leverage distributed computation, thus ignoring the possibility of intra- and inter-GPU sharing, which exhibits poor resource usage. In this paper, we present Fluid, a generalized hyperparameter tuning execution engine, that coordinates between hyperparameter tuning jobs and cluster resources. Fluid schedules evaluation trials in such jobs using a water-filling approach to make the best use of resources both at intra- and inter-GPU granularities to speed up the tuning process. By abstracting a hyperparameter tuning job as a sequence of TrialGroup, Fluid can boost the performance of diverse hyperparameter tuning solutions. Our experiments show that Fluid can speed up synchronous BOHB by 200%, and BOHB and ASHA by 30% while having similar final accuracy.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38952759
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at MLSYS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers