05/04/2021

Scaling Polyhedral Neural Network Verification on GPUs

Christoph Müller , François Serre, Gagandeep Singh, Markus Püschel, Martin Vechev

Keywords:

Abstract: Certifying the robustness of neural networks against adversarial attacks is critical to their reliable adoption in real-world systems including autonomous driving and medical diagnosis. Unfortunately, state-of-the-art verifiers either do not scale to larger networks or are too imprecise to prove robustness, which limits their practical adoption. In this work, we introduce GPUPoly, a scalable verifier that can prove the robustness of significantly larger deep neural networks than possible with prior work. The key insight behind GPUPoly is the design of custom, sound polyhedra algorithms for neural network verification on a GPU. Our algorithms leverage the available GPU parallelism and the inherent sparsity of the underlying verification task. GPUPoly scales to very large networks: for example, it can prove the robustness of a 1M neuron, 34-layer deep residual network in $\approx$ 22 seconds. We believe GPUPoly is a promising step towards the practical verification of large real-world networks.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38952720
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at MLSYS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers