02/02/2021

Towered Actor Critic For Handling Multiple Action Types In Reinforcement Learning For Drug Discovery

Sai Krishna Gottipati, Yashaswi Pathak, Boris Sattarov, Sahir, Rohan Nuttall, Mohammad Amini, Matthew E. Taylor, Sarath Chandar

Keywords:

Abstract: Reinforcement learning (RL) has made significant progress in both abstract and real-world domains, but the majority of state-of-the-art algorithms deal only with monotonic actions. However, some applications require agents to reason over different types of actions. Our application simulates reaction-based molecule generation, used as part of the drug discovery pipeline, and includes both uni-molecular and bi-molecular reactions. This paper introduces a novel framework, towered actor critic (TAC), to handle multiple action types. The TAC framework is general in that it is designed to be combined with any existing RL algorithms for continuous action space. We combine it with TD3 to empirically obtain significantly better results than existing methods in the drug discovery setting. TAC is also applied to RL benchmarks in OpenAI Gym and results show that our framework can improve, or at least does not hurt, performance relative to standard TD3.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948991
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers