02/02/2021

Commission Fee is not Enough: A Hierarchical Reinforced Framework for Portfolio Management

Rundong Wang, Hongxin Wei, Bo An, Zhouyan Feng, Jun Yao

Keywords:

Abstract: Portfolio management via reinforcement learning is at the forefront of fintech research, which explores how to optimally reallocate a fund into different financial assets over the long term by trial-and-error. Existing methods are impractical since they usually assume each reallocation can be finished immediately and thus ignoring the price slippage as part of the trading cost. To address these issues, we propose a hierarchical reinforced stock trading system for portfolio management (HRPM). Concretely, we decompose the trading process into a hierarchy of portfolio management over trade execution and train the corresponding policies. The high-level policy gives portfolio weights at a lower frequency to maximize the long-term profit and invokes the low-level policy to sell or buy the corresponding shares within a short time window at a higher frequency to minimize the trading cost. We train two levels of policies via a pre-training scheme and an iterative training scheme for data efficiency. Extensive experimental results in the U.S. market and the China market demonstrate that HRPM achieves significant improvement against many state-of-the-art approaches.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948209
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers