02/02/2021

CompFeat: Comprehensive Feature Aggregation for Video Instance Segmentation

Yang Fu, Linjie Yang, Ding Liu, Thomas S. Huang, Humphrey Shi

Keywords:

Abstract: Video instance segmentation is a complex task in which we need to detect, segment, and track each object for any given video. Previous approaches only utilize single-frame features for the detection, segmentation, and tracking of objects and they suffer in the video scenario due to several distinct challenges such as motion blur and drastic appearance change. To eliminate ambiguities introduced by only using single-frame features, we propose a novel comprehensive feature aggregation approach (CompFeat) to refine features atboth frame-level and object-level with temporal and spatial context information. The aggregation process is carefully designed with a new attention mechanism which significantly increases the discriminative power of the learned features. We further improve the tracking capability of our model through a siamese design by incorporating both feature similarities and spatial similarities. Experiments conducted on the YouTube-VIS dataset validate the effectiveness of proposed CompFeat.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947922
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers