02/02/2021

Static-Dynamic Interaction Networks for Offline Signature Verification

Huan Li, Ping Wei, Ping Hu

Keywords:

Abstract: Offline signature verification is a challenging issue that is widely used in various fields. Previous approaches model this task as a static feature matching or distance metric problem of two images. In this paper, we propose a novel Static-Dynamic Interaction Network (SDINet) model which introduces sequential representation into static signature images. A static signature image is converted to sequences by assuming pseudo dynamic processes in the static image. A static representation extracting deep features from signature images describes the global information of signatures. A dynamic representation extracting sequential features with LSTM networks characterizes the local information of signatures. A dynamic-to-static attention is learned from the sequences to refine the static features. Through the static-to-dynamic conversion and the dynamic-to-static attention, the static representation and dynamic representation are unified into a compact framework. The proposed method was evaluated on four popular datasets of different languages. The extensive experimental results manifest the strength of our model.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948503
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers