02/02/2021

Terrace-based Food Counting and Segmentation

Huu-Thanh Nguyen, Chong-Wah Ngo

Keywords:

Abstract: This paper represents object instance as a terrace, where the height of terrace corresponds to object attention while the evolution of layers from peak to sea level represents the complexity in drawing the finer boundary of an object. A multitask neural network is presented to learn the terrace representation. The attention of terrace is leveraged for instance counting, and the layers provide prior for easy-to-hard pathway of progressive instance segmentation. We study the model for counting and segmentation for a variety of food instances, ranging from Chinese, Japanese to Western food. This paper presents how the terrace model deals with arbitrary shape, size, obscure boundary and occlusion of instances, where other techniques are currently short of.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948072
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers