02/02/2021

Weakly Supervised Deep Hyperspherical Quantization for Image Retrieval

Jinpeng Wang, Bin Chen, Qiang Zhang, Zaiqiao Meng, Shangsong Liang, Shutao Xia

Keywords:

Abstract: Deep quantization methods have shown high efficiency on large-scale image retrieval. However, current models heavily rely on ground-truth information, hindering the application of quantization in label-hungry scenarios. A more realistic demand is to learn from inexhaustible uploaded images that are associated with informal tags provided by amateur users. Though such sketchy tags do not obviously reveal the labels, they actually contain useful semantic information for supervising deep quantization. To this end, we propose Weakly-Supervised Deep Hyperspherical Quantization (WSDHQ), which is the first work to learn deep quantization from weakly tagged images. Specifically, 1) we use word embeddings to represent the tags and enhance their semantic information based on a tag correlation graph. 2) To better preserve semantic information in quantization codes and reduce quantization error, we jointly learn semantics-preserving embeddings and supervised quantizer on hypersphere by employing a well-designed fusion layer and tailor-made loss functions. Extensive experiments show that WSDHQ can achieve state-of-art performance in weakly-supervised compact coding.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947767
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers