02/02/2021

Investigate Indistinguishable Points in Semantic Segmentation of 3D Point Cloud

Mingye Xu, Zhipeng Zhou, Junhao Zhang, Yu Qiao

Keywords:

Abstract: This paper investigates the indistinguishable points (difficult to predict label) in semantic segmentation for large-scale 3D point clouds. The indistinguishable points consist of those located in complex boundary, points with similar local textures but different categories, and points in isolate small hard areas, which largely harm the performance of 3D semantic segmentation. To address this challenge, we propose a novel Indistinguishable Area Focalization Network (IAF-Net), which select indistinguishable points adaptively by utilizing the hierarchical semantic features and enhance fine-grained features for points especially those indistinguishable points. We also introduce multi-stage loss to improve the feature representation in a progressive way. Moreover, in order to analyze the segmentation performances of indistinguishable areas, we propose a new evaluation metric called Indistinguishable Points Based Metric (IPBM). Our IAF-Net achieves the state-of-the-art performance on several popular 3D point datasets e.g. S3DIS and ScanNet, and clearly outperform other methods on IPBM. Our code will be available at https://github.com/MingyeXu/IAF-Net.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948122
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers